TABLE OF CONTENTS

CLEAN TECH JOB TRENDS 2009 ... 2

Defining Clean Tech ... 3

Show Me the Money: Clean-Tech Job Compensation Survey .. 4

Where Are the Jobs? ... 6

Manufacturing: A Showcase for Clean-Tech Transition 8

From Crisis to Opportunity ... 9

FIVE TRENDS TO WATCH .. 10

1. **ENERGY EFFICIENCY – THE MOST BANG FOR YOUR BUCK** ... 10

 Top Headlines ... 11

 Select Organizations to Watch ... 11

2. **AGING WORKFORCE, NEW CLEAN TECHNOLOGIES TRANSFORM UTILITY INDUSTRY LANDSCAPE** ... 12

 Top Headlines ... 13

 Select Organizations to Watch ... 13

3. **COMING TO A CAMPUS NEAR YOU: CLEAN-TECH CAREER TRAINING** 14

 Top Headlines ... 15

 Select Organizations to Watch ... 15

4. **CLEAN-TECH MANUFACTURING MOVES NEAR END-USE MARKETS** .. 16

 Top Headlines ... 17

 Select Organizations to Watch ... 17

5. **THE NEXT BIG THING IN IT JOBS: NETWORKING THE GRID** .. 18

 Top Headlines ... 19

 Select Organizations to Watch ... 19

THE ROAD AHEAD: FIVE U.S. MODELS FOR PUBLICLY FINANCING CLEAN-TECH JOB CREATION20

Model #1: Clean Energy Deployment Administration (The Green Bank) .. 21

Model #2: Clean Energy Victory Bonds ... 21

Model #3: Tax Credit Bonds .. 21

Model #4: Federal Loan Guarantees .. 22

Model #5: City Funds .. 22

JOB RESOURCES .. 23

PREMIER SPONSORS ... 27

MAJOR SPONSORS .. 28

ABOUT CLEAN EDGE, INC. .. 29
CLEAN TECH JOB TRENDS 2009

For nearly a decade, Clean Edge has issued its annual *Clean Energy Trends* report series in which we present the latest clean-energy trends; report on the current and projected size of the global market for solar, wind and biofuels; and provide insights and intelligence on the broader clean-energy market. This year, we are launching a new report series, focusing on employment in the clean-tech industry, in which we hope to do for clean-tech jobs what we did for clean energy in our earlier reports.

Admittedly, we aren’t alone in being interested in the topic of clean-tech jobs.

U.S. President Obama and Chinese President Hu Jintao have both made clean-tech development and deployment a cornerstone of their leadership, targeting the creation of millions of new clean-tech jobs in the process. Brazil, the European Union, India, Japan, and other nations are also aggressively pursuing clean-tech job creation – investing dollars and human capital and implementing supportive policies. And the clean-technology sector is now one of the largest recipients of venture capital (VC) dollars – alongside biotech, software, and medical devices – with clean energy alone raking in $3.35 billion in the U.S. in 2008, according to New Energy Finance. Globally, VC and private equity totaled $13.5 billion in clean-energy investments last year.

Private investments, while declining in 2009 and certainly under pressure in the current economic climate, are creating jobs among a host of startups such as smart grid networking company Silver Spring Networks in California; high efficiency window and green building materials manufacturer Serious Materials, with plants in California and around the U.S.; and thin-film solar photovoltaic (PV) manufacturer Odersun in Germany. TV stations, newspapers, and magazines across the globe are focused on the emerging phenomenon, with near daily coverage. And dozens of websites and social media outlets are now dedicated to the clean-tech jobs market, including our own jobs board, Clean Edge Jobs.

The unprecedented level of interest and activity in clean-tech jobs is considerable, but there’s a reason for it. Many believe we are just at the beginning of the clean-tech jobs creation era, with clean tech offering the greatest opportunity for wealth and job creation (and global economic competitiveness) since the advent of the computer and the Internet.

In a Pew Charitable Trusts report published in June 2009, clean-energy jobs, defined as jobs in renewable energy, energy efficiency, environmentally friendly production, conservation and pollution mitigation, plus related training and support, accounted for half a percent of total employment in the U.S. – 770,000 jobs in 2007. While this number might seem small, it falls into a comparable sphere with such mature U.S. industries as biotech (200,000 jobs), telecommunications (989,000), and traditional energy including utilities, coal mining and oil and gas extraction (1.3 million). The Pew report also found that clean-energy jobs are growing faster than other sectors, increasing by 9.1 percent from 1998 to 2007 compared to 3.7 percent growth for all U.S. jobs over that same time period. According to Clean Edge research, the solar PV industry alone now represents approximately 200,000 direct and indirect jobs globally, while the wind power sector includes more than 400,000 direct and indirect jobs globally.
But what exactly is a clean-tech job?

We define clean-tech jobs as those that are a direct result of the development, production, and/or deployment of technologies that harness renewable materials and energy sources; reduce the use of natural resources by using them more efficiently and productively; and cut or eliminate pollution and toxic wastes. There’s no mistaking the types of jobs we’re talking about – they include solar photovoltaic (PV) system installers, wind-turbine technicians, energy-efficiency software developers, green building designers, and clean-energy marketers. While some of these jobs may seem exotic, they are increasingly becoming the norm. The table below shows some of the key sectors in which clean-tech jobs are now emerging.

Top Clean-Tech Job Sectors

Energy

- Renewable Energy (e.g., Solar, Wind)
- Energy Storage
- Energy Conservation and Efficiency
- Smart Grid Devices and Networks
- Electric Transmission and Grid Infrastructure
- Biomass and Sustainable Biofuels

Transportation

- Hybrid-Electric Vehicles
- All-Electric Vehicles
- Electric Rail
- Hydrogen Fuel Cells for Transport
- Advanced Transportation Infrastructure
- Advanced Batteries for Vehicles

Water

- Energy-Efficient Desalination
- UV Filtration
- Reverse Osmosis Filtration
- Membranes
- Automated Metering and Controls
- Water Recovery and Capture

Materials

- Biomimicry
- Bio-Based Materials
- Reuse and Recycling
- Green Building Materials
- Cradle-to-Cradle Systems
- Green Chemistry

Some of these sectors are rising to the top. According to Clean Edge research, the top five sectors for clean-tech job activity in the U.S., based on a combination of job placements, job postings, and public and private investments, are solar; biofuels and biomaterials; conservation and efficiency; smart grid; and wind power.

Top 5 Sectors for Clean-Tech Job Activity (U.S.)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Sectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Solar</td>
</tr>
<tr>
<td>2</td>
<td>Biofuels & Biomaterials</td>
</tr>
<tr>
<td>3</td>
<td>Conservation & Efficiency</td>
</tr>
<tr>
<td>4</td>
<td>Smart Grid</td>
</tr>
<tr>
<td>5</td>
<td>Wind Power</td>
</tr>
</tbody>
</table>

Source: Clean Edge, Inc., 2009
But for clean-tech jobs to matter, they need to pay well and provide job security – part of long-term and sustainable clean-tech careers. For this report, Clean Edge conducted the first annual survey of clean-tech jobs with PayScale, a leading publisher of global compensation data, to determine the median salary and wage compensation for a range of clean-tech jobs. Our survey shows that clean-tech jobs often compete where it matters most – on pay levels.

Below is a sampling of median annual salary compensation data that we uncovered for select jobs within a number of clean-tech sectors worldwide.

Clean-Tech Compensation Overview

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Clean-Tech Industry</th>
<th>Median Pay</th>
<th>Typical Job Level</th>
<th>Typical Degree Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boiler Operator</td>
<td>Biofuels / Biomaterials</td>
<td>$61,100</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Refuse, Garbage, and Recyclable Material Collector</td>
<td>Biofuels / Biomaterials</td>
<td>$38,100</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Research Associate, Molecular Biology</td>
<td>Biofuels / Biomaterials</td>
<td>$46,600</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Geothermal Power Engineer</td>
<td>Geothermal</td>
<td>$71,799</td>
<td>Entry-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Architect (LEED Certified)</td>
<td>Green Building</td>
<td>$58,700</td>
<td>Mid-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Building Maintenance Engineer</td>
<td>Green Building</td>
<td>$43,300</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Energy Field Auditor</td>
<td>Green Building</td>
<td>$48,500</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>HVAC Service Technician</td>
<td>Green Building</td>
<td>$49,500</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Instrumentation & Controls Technician</td>
<td>Green Building</td>
<td>$72,900</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Insulation Worker</td>
<td>Green Building</td>
<td>$36,100</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Project Manager, Construction (LEED Certified)</td>
<td>Green Building</td>
<td>$80,000</td>
<td>Senior-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Manufacturing Engineer</td>
<td>PHEV / EV</td>
<td>$60,300</td>
<td>Entry-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Mechanical Engineer</td>
<td>PHEV / EV</td>
<td>$63,600</td>
<td>Entry-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Accountant</td>
<td>Renewable Energy, General</td>
<td>$46,400</td>
<td>Mid-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Business Analyst</td>
<td>Renewable Energy, General</td>
<td>$61,500</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Financial Analyst</td>
<td>Renewable Energy, General</td>
<td>$60,200</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Marketing Coordinator</td>
<td>Renewable Energy, General</td>
<td>$39,300</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Project Developer</td>
<td>Renewable Energy, General</td>
<td>$106,000</td>
<td>Mid-Level</td>
<td>Master's Degree</td>
</tr>
<tr>
<td>Embedded Systems Engineer</td>
<td>Smart Grid</td>
<td>$77,100</td>
<td>Mid-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Hardware Design Engineer</td>
<td>Smart Grid</td>
<td>$87,700</td>
<td>Mid-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
</tbody>
</table>
Clean-Tech Compensation Overview

<table>
<thead>
<tr>
<th>Job Title</th>
<th>Clean-Tech Industry</th>
<th>Median Pay</th>
<th>Typical Job Level</th>
<th>Typical Degree Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journeyman Lineman</td>
<td>Smart Grid</td>
<td>$67,900</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Network Operations Center Technician</td>
<td>Smart Grid</td>
<td>$46,400</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Software Engineer</td>
<td>Smart Grid</td>
<td>$65,500</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Construction Foreman</td>
<td>Solar PV</td>
<td>$53,500</td>
<td>Senior-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Electrical Design Engineer</td>
<td>Solar PV</td>
<td>$65,000</td>
<td>Mid-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Maintenance Technician</td>
<td>Solar PV</td>
<td>$44,100</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Research and Development (R&D) Lab Technician</td>
<td>Solar PV</td>
<td>$41,400</td>
<td>Mid-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Solar Energy System Installer</td>
<td>Solar PV</td>
<td>$40,000</td>
<td>Entry-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Solar Energy Systems Designer</td>
<td>Solar PV</td>
<td>$42,600</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Solar Fabrication Technician</td>
<td>Solar PV</td>
<td>$43,800</td>
<td>Entry-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>System Integration Engineer</td>
<td>Solar PV</td>
<td>$75,100</td>
<td>Mid-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Construction Superintendent</td>
<td>Wind Power</td>
<td>$74,000</td>
<td>Senior-Level</td>
<td>Bachelor's Degree</td>
</tr>
<tr>
<td>Field Service Engineer</td>
<td>Wind Power</td>
<td>$62,400</td>
<td>Mid-Level</td>
<td>Engineering Bachelor's Degree</td>
</tr>
<tr>
<td>Sheet Metal Worker</td>
<td>Wind Power</td>
<td>$50,300</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Welder, Cutter, Solderer, or Brazer</td>
<td>Wind Power</td>
<td>$50,300</td>
<td>Mid-Level</td>
<td>High School/Associate's Degree</td>
</tr>
<tr>
<td>Wind Turbine Technician</td>
<td>Wind Power</td>
<td>$52,600</td>
<td>Entry-Level</td>
<td>Bachelor's Degree</td>
</tr>
</tbody>
</table>

Source: PayScale and Clean Edge, Inc., 2009

Definitions:

Median Pay: The median pay is the national median (50th Percentile) annual total cash compensation (TCC). TCC combines base annual salary or hourly wage, bonuses, profit sharing, tips, commissions, overtime pay (when typical for a given job), and other forms of cash earnings, as applicable. It does not include equity (stock) compensation, cash value of retirement benefits, or value of other non-cash benefits (e.g., healthcare). Half the people doing the job earn more than the median, while half earn less.

Range in pay within a job can be very wide depending upon years of experience, scope of responsibility, number of employees, etc. For example, pay can be higher than the stated median pay if the worker has higher levels of experience and responsibility or they work at a larger company.

Typical Job Level: There are three categories: 1) Entry-Level Positions where workers typically have less than 5 years of experience, 2) Mid-Level Positions where workers typically have between 5 and 10 years of experience, and 3) Senior-Level Positions where workers typically have more than 10 years of experience. Years of experience refers to the number of years the respondent has spent in the field/career. Therefore the years of experience will incorporate all applicable jobs in the field, not just the current job.

Typical Degree Level: This is the degree held by the majority of respondents.
Where Are the Jobs?

For first-time job seekers, mid-career changers, or anyone else interested in this sector, where are the jobs in clean tech? In our research, we’ve identified the top 15 metro areas in the U.S. for clean-tech job activity. This list of cities includes well-touted clean-tech centers such as San Francisco and Boston as well as less obvious contenders such as Chicago and Houston. To come up with our list of top U.S. clean-tech job cities, we evaluated a number of datasets, including current and historical job postings, early stage and public market investment activity, clean-tech job presence, and clean-energy patent activity. These metro areas stand at the forefront of clean-tech job activity in the U.S.

Clean-Tech Job Activity – Top 15 U.S. Metro Areas*

<table>
<thead>
<tr>
<th>Rank</th>
<th>Metro Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>San Francisco-Oakland-San Jose, CA</td>
</tr>
<tr>
<td>2</td>
<td>Los Angeles-Riverside-Orange County, CA</td>
</tr>
<tr>
<td>3</td>
<td>New York-Northern New Jersey-Long Island, NY-NJ-CT-PA</td>
</tr>
<tr>
<td>4</td>
<td>Boston-Worcester-Lawrence-Lowell-Brockton, MA-NH</td>
</tr>
<tr>
<td>5</td>
<td>Washington-Baltimore, D.C.-MD-VA-WV</td>
</tr>
<tr>
<td>6</td>
<td>Denver-Boulder-Greeley, CO</td>
</tr>
<tr>
<td>7</td>
<td>Seattle-Tacoma-Bremerton, WA</td>
</tr>
<tr>
<td>8</td>
<td>Portland-Salem, OR</td>
</tr>
<tr>
<td>9</td>
<td>Chicago-Gary-Kenosha, IL-IN-WI</td>
</tr>
<tr>
<td>10</td>
<td>Sacramento-Yolo County, CA</td>
</tr>
<tr>
<td>11</td>
<td>San Diego, CA</td>
</tr>
<tr>
<td>12</td>
<td>Austin-San Marcos, TX</td>
</tr>
<tr>
<td>13</td>
<td>Phoenix, AZ</td>
</tr>
<tr>
<td>14</td>
<td>Detroit-Ann Arbor, MI</td>
</tr>
<tr>
<td>15</td>
<td>Houston-Galveston-Brazoria, TX</td>
</tr>
</tbody>
</table>

Source: Clean Edge, Inc., 2009

*Job rankings are based on a proprietary weighting of job postings, investment activity, job presence, and patent activity collected from the following datasets:
 • Job postings including historical data from executive recruiter Hobbs & Towne and from Clean Edge Jobs and other leading job boards
 • Investment activity provided by New Energy Finance, including early stage investments (number of deals, money invested) and public market investments (number of deals, money invested) by U.S. metro region
 • State level business & job presence published in a number of research reports including Pew Center’s “The Clean Energy Economy” (based on data from the National Establishment Time Series database by Walls & Associates)

Although the 15 metro areas listed above are current hotbeds of clean-tech job activity, they are far from the only places to find quality employment in the sector. The clean-tech revolution is a highly dispersed phenomenon – unlike the earlier high-tech revolution with its epicenter of Silicon Valley. No one place or region will control any one clean-tech sector. Clusters of clean-tech activity, supported by local technology development, capital flows, and supportive public policies, are springing up across the U.S. and around the world. The table below highlights this point – showcasing examples of cities around the world (not including any of our top 15 U.S. centers, many of which have extensive activities in the following sectors) that are having a major impact in the world of clean tech.
In addition to highlighting key regional centers of clean-tech employment, it’s illustrative to look at which companies are doing the hiring. Globally, clean-tech pure plays -- companies dedicated to clean-tech activities such as solar, wind, water filtration, and energy intelligence -- are a leading source of clean-tech jobs. Of the top 10 companies, four are headquartered in the U.S., three are based out of China, and three are European. Below is a list of the top 10 publicly traded clean-tech pure play employers worldwide – along with their most recent employee count.

Top 10 Clean-Tech Employers (Publicly Traded Pure Plays)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Company</th>
<th>Headquarters</th>
<th>Sector/Activity</th>
<th>Employees</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vestas Wind Systems</td>
<td>Randers, Denmark</td>
<td>Wind</td>
<td>21,100</td>
</tr>
<tr>
<td>2</td>
<td>LDK Solar</td>
<td>Xinyu, China</td>
<td>Solar</td>
<td>14,100</td>
</tr>
<tr>
<td>3</td>
<td>Nalco</td>
<td>Naperville, IL</td>
<td>Water</td>
<td>11,700</td>
</tr>
<tr>
<td>4</td>
<td>Suntech Power</td>
<td>Wuxi, China</td>
<td>Solar</td>
<td>9,000</td>
</tr>
<tr>
<td>5</td>
<td>Itron</td>
<td>Liberty Lake, WA</td>
<td>Smart Grid</td>
<td>8,700</td>
</tr>
<tr>
<td>6</td>
<td>China BAK Battery</td>
<td>Shenzhen, China</td>
<td>Energy Storage</td>
<td>8,200</td>
</tr>
<tr>
<td>7</td>
<td>Baldor Electric</td>
<td>Fort Smith, AR</td>
<td>Electric Motors</td>
<td>7,800</td>
</tr>
<tr>
<td>8</td>
<td>Gamesa</td>
<td>Vitoria, Spain</td>
<td>Wind</td>
<td>7,200</td>
</tr>
<tr>
<td>9</td>
<td>Kingspan Group</td>
<td>Kingscourt, Ireland</td>
<td>Green Building</td>
<td>5,500</td>
</tr>
<tr>
<td>10</td>
<td>SunPower</td>
<td>San Jose, CA</td>
<td>Solar</td>
<td>5,400</td>
</tr>
</tbody>
</table>

Source: Clean Edge, Inc., 2009

Based on companies’ reported claims and publicly available Q2 2009 financial filings/most recent annual reports
In addition to these pure plays, diversified multinational corporations are also adding to the ranks of emerging clean-tech jobs. Siemens currently has 5,500 employees working for its wind business, BP has more than 2,200 solar employees, and GE Energy, with a diverse portfolio of both conventional and rapidly expanding clean-energy activities, employs 40,000. Other multinationals with significant clean-tech workforces, among a growing list, include Sharp, Toyota, and ABB. And, as we point out later in the report, major entities such as utilities are hiring more clean-tech workers as they transform their businesses.

The move toward a clean-tech economy is also becoming evident in the transition taking place in communities across the U.S. and abroad. Formerly shuttered manufacturing facilities, often in hard-hit industrial areas, are being retrofitted from traditional old-line industry roles into new and emerging clean-tech activities. Clean-tech manufacturers are setting up shop in places where they can hire skilled workers laid off in previous plant shutdowns, with minimal retraining. Not all the indicators are positive. Along with the downturn in the broader economy, many clean-tech deployments have been put on hold or completely scrapped. But many positive developments are moving forward nonetheless.

U.S. MANUFACTURING JOBS IN TRANSITION:
Examples of old-line manufacturing losses replaced by new clean-tech manufacturing gains

<table>
<thead>
<tr>
<th>Location</th>
<th>Old Manufacturer</th>
<th>Job Loss</th>
<th>New Manufacturer</th>
<th>Job Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton, Iowa</td>
<td>Maytag (Whirlpool): Home appliances</td>
<td>1,800 people laid off in 2007</td>
<td>TPI Composites: Wind turbine blades</td>
<td>Has hired 325 people since 2008, aiming for 500 total jobs by 2010</td>
</tr>
<tr>
<td>West Branch, Iowa</td>
<td>Sauer Danfoss: Hydraulic pumps</td>
<td>130 people laid off in 2003</td>
<td>Acciona: Wind turbines</td>
<td>130 employed at the plant, with plans to expand as demand grows</td>
</tr>
<tr>
<td>New Bedford, Massachusetts</td>
<td>Polaroid/Multilayer Coating Technologies (MCT)</td>
<td>In 2006, Polaroid sold its film negative manufacturing facility to MCT, which then closed the plant just one year after the sale, terminating 250 jobs</td>
<td>Konarka: Thin film solar PV</td>
<td>Facility reopened in October 2008, now employs about 20 Konarka workers; the company plans to hire 100 more in the next three years</td>
</tr>
<tr>
<td>Vandergrift, Pennsylvania</td>
<td>Kensington Windows: Window manufacturer</td>
<td>150 laid off when plant closed in 2008</td>
<td>Serious Materials: Ultra energy efficient windows</td>
<td>Plant reopened after Serious Materials bought Kensington in January 2009, now employs 40; hopes to employ more than 100</td>
</tr>
<tr>
<td>Wixom, Michigan</td>
<td>Ford Motor Company</td>
<td>More than 1,500 jobs lost when plant closed in 2007</td>
<td>The 320-acre facility was recently bought by Xtreme Power (power systems for wind and solar) and Clairvoyant Energy (solar panel manufacturing)</td>
<td>With reopening planned for 2011, the plant is to become a renewable energy business park and could potentially employ thousands</td>
</tr>
</tbody>
</table>

Source: Clean Edge, Inc., 2009
We stand at a unique crossroads. The recent global financial crisis has been disastrous for already struggling old-line industries in the U.S., with the bankruptcy of General Motors heading a long list of business and employment woes. As has been quoted often, “A crisis is a terrible thing to waste.” We believe this crisis can accelerate the transition to a clean-energy economy, with the creation of millions of new jobs in a wide range of clean-tech sectors. Those countries that take an active role will move out of the current crisis better positioned to lead in the next industrial revolution: clean technologies.

Indeed, although the numbers are relatively small today, employment in clean tech is moving solidly into the mainstream. From wind-turbine production line workers in central Pennsylvania and ethanol distillers in São Paulo, Brazil, to smart-grid software designers in northern California and PV manufacturers in China’s Jiangsu province, clean tech has come a long way from the “alternative energy” pioneers of off-the-grid solar and other first-generation commercial technologies of the 1970s. And the clean-tech field is hot, particularly among younger students and graduates of community colleges, universities, and business schools and those in the high-tech centers of Abu Dhabi, Silicon Valley, Singapore, and Tokyo. At the same time, clean tech has invigorated social justice and labor groups to help extend these new jobs to historically disenfranchised groups. All of today’s major global forces – action on carbon emissions reduction, lessening dependence on volatile fossil fuel supplies and prices, the sea change in government leadership on clean energy from Washington, D.C. to Canberra, Australia – point to huge potential growth in clean-tech employment.

In the following pages we highlight five major trends that we see reshaping the clean-tech jobs landscape. These include how conservation and efficiency are creating tens of thousands of new jobs and leading the clean-tech pack; how utilities facing an aging workforce are turning to a new stable of workers trained in clean tech and the smart grid; and how new educational programs are opening up clean-tech career paths. We then look at a number of emerging public financing models, such as Victory Bonds and the Green Bank, that could help fuel the next wave of innovation and job growth in clean tech.

Finally, at the end of the report, we provide an online resource guide for clean-tech job seekers and employers alike – with references to clean-tech books, reports, web sites, jobs boards, job fairs, networking organizations, educational programs from trade schools to MBAs, and more. We hope that our report will be a useful annual guide to job seekers, employers, and investors as the transition to a clean-tech economy moves forward.
In an otherwise bleak job market, energy efficiency companies around the world are proudly proclaiming, “Now Hiring!” This trend is catalyzed by stimulus dollars and a growing realization by companies, utilities, and governments that volatile energy costs make energy efficiency a highly competitive option for meeting their new energy needs, and a cost-effective job creator.

The Political Economy Research Institute, in a June 2009 publication, reported that the number of U.S. direct jobs created per million dollar investment in building retrofits and smart grid is far greater than direct jobs created in the coal industry, by a factor of 8:1 and 5:1 respectively. Even compared to wind and solar, at 4.3 and 5.4 direct jobs created per million dollars invested respectively, building retrofits’ seven direct jobs per million dollars invested shows how the ‘fifth fuel’ – as energy efficiency is known – has the potential to pack the most bang for the buck.

The Northwest Planning and Conservation Council, for example, has projected that Idaho, Montana, Oregon, and Washington can meet 85 percent of their new electricity needs over the next 20 years solely through conservation, and do so at half the cost of building new power plants. Energy efficiency attracted more than 35 percent of the estimated $470 billion in green stimulus funding worldwide from January to May 2009, according to global financial firm HSBC. The firm defines efficiency as funding for buildings and grid infrastructure.

“Efficiency is the quickest way to meet our energy needs cost-effectively while making the U.S. a world leader in clean-energy technologies across multiple sectors.” says Skip Laitner, director of economic and social analysis at the American Council for an Energy Efficient Economy.

In the face of economic turmoil, European efficiency leader Germany has allocated approximately 10% of its total (and more than 60% of climate-related) recovery funds to building retrofits. Since 2006, 6.4 billion euros (U.S. $8.5 billion) have
been invested in the country’s CO2 Building Rehabilitation Programme. That’s helped renovate 800,000 homes and created approximately 220,000 jobs in medium-sized construction companies, according to the German Ministry of Transport, Building and Urban Affairs.

In the U.S., while stimulus funds have been slow to actually roll out in some cases, workforce development agencies’ efforts to administer weatherization training programs are well underway. The Weatherization Training Center at Pennsylvania Technical College in Williamsport will train 2,000 installers, crew chiefs, and energy auditors in the next two to three years, up from less than 400 annually in the past. And with the U.S. Department of Energy targeting one million homes to be weatherized in the next decade, they will likely be busy for years to come.

Meanwhile, venture-backed startups such as Hycrete and Serious Materials are developing new construction materials that require less energy and toxins to produce while delivering superior performance and efficiency. As LEED certification becomes more stringent, and eventually incorporated into building codes, these and other companies will likely need to continue to scale their workforce to meet growing demand.

The real test, however, will be the economy’s uptake of these newly trained workers in the years ahead. Critics point out that a big short-term infusion of stimulus dollars in relatively low-paying jobs does not qualify weatherization and lighting upgrades as viable long-term industries. New financing models such as revolving loan funds are being looked at closely by governments across the country as a mechanism that could help to turn these jobs into careers.

Energy Efficiency Provisions in Waxman-Markey Act Could Create 500,000 Jobs

Texas Energy Efficiency Industry Gets Stimulated

U.K. Government Unveils Plans to Meet 2016 Zero-Carbon Homes Target

Energy Efficiency Effort a Boost to N.C. Jobs

U.S. and China Join Forces on Energy Efficient Buildings

South Korea to Spend $84 Billion on Clean Energy and Energy Efficiency, Add Jobs

Related Job Titles

- Commercial Green Building & Retrofit Architect
- Energy Efficiency Finance Manager
- Energy Field Auditor
- Instrumentation Controls Technician
- Insulation Installer
- Lighting & HVAC Energy Engineer
- Weatherization Operations Manager

Top Headlines

Energy Efficiency Provisions in Waxman-Markey Act Could Create 500,000 Jobs

Texas Energy Efficiency Industry Gets Stimulated

U.K. Government Unveils Plans to Meet 2016 Zero-Carbon Homes Target

Energy Efficiency Effort a Boost to N.C. Jobs

U.S. and China Join Forces on Energy Efficient Buildings

South Korea to Spend $84 Billion on Clean Energy and Energy Efficiency, Add Jobs

Select Organizations to Watch

Hycrete

www.hycrete.com

Orion Energy Systems

www.oriones.com

Portland Energy Conservation, Inc.

www.peci.org

RWE Effizienz GmbH

www.rwe.com/web/cms/de/249838/effizienz

Serious Materials

www.seriousmaterials.com
For some time, there have been warnings that the global workforce will struggle to replace vast amounts of knowledge and experience once the baby boomer generation reaches the age of retirement. The electric utility industry, with below-average turnover and thousands of career-long employees, is one of the most telling examples of this trend. While utilities frantically prepare for widespread retirements, they also have to acclimate to the growing presence of clean technologies. New business activities – smart grid deployments, large solar thermal power purchase agreements, and utility-owned and operated renewable energy projects – will necessitate vast retraining campaigns and novel hiring strategies. In the face of mass retirement and adoption of clean technologies, the utility industry’s workforce is undergoing a significant transformation, one that will present great opportunities for those hoping to work on the front lines of the clean-energy economy.

Although job seekers will focus on the great potential behind this trend, utilities don’t have the luxury of optimism and will be forced to intensify hiring and training efforts to make the most of a fleeting worker supply. An industry labor shortage seems counterintuitive given today’s steep unemployment rates, yet the challenge is real. Almost half (46%) of the more than 20,000 employees at California’s largest utility, Pacific Gas & Electric (PG&E), for example, will reportedly be eligible to retire in the next four years.

To avoid these crippling labor constraints, the utility industry is looking for ways to attract a new generation of employees. One group dedicated to this effort is the Center for Energy Workforce Development (CEWD). Formed in 2006, the nonprofit consortium of utilities and their associations works with contractors, unions, and educators to implement strategies to build a skilled workforce and ease the impact of an industry labor shortage. CEWD’s Get Into Energy Career Pathways Model is designed to provide a roadmap for entry into skilled utility technician positions. Individual utilities’ efforts, like PG&E’s PowerPathway Bridge Programs, are also bolstering the workforce pipeline. In 2008 and 2009 PG&E...
offered courses at local community colleges designed to prepare students to pass the company’s pre-employment test for maintenance and construction jobs.

Traditional utility recruiting efforts have satisfied human resource needs in the past, but as the number of clean-energy utility jobs grows, new training sources – like those mentioned in the “Coming to a Campus Near You: Clean-Tech Career Training” trend on page #14 – are beginning to play a bigger role. Clean-tech education programs are great career feeder systems for sector-specific jobs with wind or solar companies, but they are also closely intertwined with the utility industry. At Oklahoma State University’s Oklahoma City campus, the wind turbine technology program trains students to work in electric power transmission and distribution. The program began classes in January 2009 and will be a boon for Oklahoma Gas & Electric’s (OG&E) growing wind energy capacity, which is slated to swell from 170 megawatts at the end of 2008 to nearly 800 MW by 2012. Graduates of the university’s wind program will be equipped to build and maintain OG&E’s transmission infrastructure, and veteran OG&E special project engineer Jim Stengle is among the program’s instructors.

Utility companies are rapidly adapting to a reality in which clean power sources like wind, solar, and geothermal are not “alternative” energy, but an integral part of the mainstream energy mix. At the same time, utilities are approaching a large wave of employee retirements that will reshape the industry. Given these two factors, we expect the utility industry’s clean-tech revolution to unfold from the bottom up – led by the hiring of younger, clean-tech savvy workers, and the promotion of current employees with a knack for new technologies.

Fresno City College Class Helps Boost PG&E Applicants

Survey: Reliability, Aging Workforce, Infrastructure Tops Electric Utilities’ Concerns

For Community Colleges, Wind Technician Training is a Growth Business

Stimulus Funds May Help Alleviate Utility Worker Shortage

Utility Grant Helps Pay for “Green Jobs”

With Training, New Mexico Workers are Making the Shift to Clean-Energy Jobs
Flush with interest and government funding, new clean-tech educational initiatives are rapidly sprouting up and expanding across the globe, creating opportunities for students and instructors alike. Driving this trend is an unprecedented alignment of leading stakeholders – universities, trade groups, companies, and students. With governments largely footing the bill – to the tune of hundreds of billions in new stimulus-backed programs – investment in clean-tech human capital is now a leading strategy to a sustained global economic recovery in the short term, and a targeted engine of growth through the 21st century.

One group at the forefront is U.S. community colleges, which are initiating new programs in high-demand fields that include energy auditing, home weatherization, solar fabrication, and wind turbine manufacturing and maintenance. The nation’s second largest generator of wind power among states, Iowa, is home to six wind turbine manufacturers including Vestas and Clipper Windpower, plus the wind developer Acciona, who compete for graduates of Iowa Lakes Community College’s two-year wind energy program in Estherville that has grown from 15 students in 2004 to 102 students this fall. Community colleges provide an excellent on-ramp to clean-tech jobs for those traditionally disenfranchised economically, including minorities, youth, military veterans, and women.

Oregon Institute of Technology was the first educational institution in the U.S. to offer a four-year degree in renewable energy engineering at its Klamath Falls and Portland locations. The program has seen meteoric growth from 5 students enrolled in 2005 to 210 students enrolled this fall. Green MBA programs at the University of Michigan, the Presidio School of Management, and many others aspire to turn out the next generation of clean-tech entrepreneurs, corporate managers, and financiers. In the EU, the European Master’s in Renewable Energy offered through Oldenburg University (U.K.), University of Zaragoza (Spain), and others provides multi-country post-doc training opportunities in a number of clean-tech sectors to feed the demand for high-level engineers worldwide.

University-industry partnerships are catalyzing innovation and creating regional clean-tech hubs. Ohio’s Toledo Univer-

Profile: National University of Singapore (NUS)

Location
Singapore

www.nus.edu.sg

Founded
1905

Students
30,000

Technology Programs
The flagship clean-energy initiative at the university is the Solar Energy Research Institute of Singapore (SERIS), which plans to produce 50 PhD and 20 Masters students in its first five years. The institute houses state-of-the-art facilities for characterization and calibration of PV materials and devices, solar cell R&D, solar building R&D, and PV module performance analysis. It aims to create a high-level talent pool of solar energy specialists to spur industry development and spinoffs.

The Buzz
The Singapore Economic Development Board expects 7,000 clean-tech jobs to be created across all clean-tech sectors by 2015. The NUS solar and clean water programs are a major opportunity for the small but highly innovative island nation to add clean-tech innovation to its already impressive technology pedigree.

Bankrollers
Between 2008-2013 the Singapore Economic Development Board (EDB) and the National University of Singapore (NUS) will invest $130 million in SERIS.

Jobs Story
SERIS currently employs 40 researchers and professionals from 14 countries and is targeting 100 people by 2010. With professor Joachim Luther, former director of the renowned Fraunhofer Institute in Germany, at the helm, the institute is already building global acclaim.

Our Take
Singapore is already home to facilities of Oerlikon Solar, Vestas, GE, and Renewable Energy Corporation, which is building one of the world’s largest solar manufacturing plants at 1.5 GW capacity. With a highly educated labor pool drawing from around the world, the NUS research and training programs will be a key part of attracting additional clean-tech investment dollars to the country.
Universities, for example, are expanding its solar engineering department as the city becomes a hub for solar companies, with Xunlight and First Solar manufacturing thin-film photovoltaics on opposite sides of the Maumee River. Similar developments are taking place in Colorado for wind; in Freiberg, Germany for solar PV; and Singapore for solar and clean water technologies.

But no matter how much is invested in educational initiatives and research in the U.S. and Europe, there is no guarantee that the jobs – particularly in manufacturing – will follow, because the growth of clean-tech educational initiatives is a global trend. Market forces will continue to push many clean-tech jobs to the highly educated and increasingly professional, yet significantly lower-cost, global labor pool. According to a 2006 Duke University study, Indian universities and technical schools graduate over 200,000 engineers each year, comparable to the number of engineers educated by U.S. schools. These graduates are now eyeing jobs at Indian clean-tech companies like REVA Motors, Moser Baer, and Suzlon, which alone has grown from 20 to 14,000 employees since 1995. Similarly, many of China’s 1,500-plus universities and institutes are rapidly building up their clean-tech related programs, such as the Beijing Solar Energy Research Institute and the Guangzhou Institute of Energy Conversion. With six of the world’s top 15 solar manufacturers now located in China, engineering graduates can make around $7,000 per year at these companies – three and half times the national average.

Make no mistake, there is a risk that there will not be enough jobs in some sectors to accommodate the rapid influx of newly minted clean-tech graduates. But as clean-tech activities rise globally, options for finding clean-tech training at a campus nearby will be easier to come by, no matter where you live.

See our resource section at the end of this report for a list of clean-tech educational opportunities.

Classes Start for First Students at Masdar Institute of Science and Technology
Siemens Opens Wind Training Center in Germany
Ghana to Set Up Solar Testing and Training Centers
Arizona State University Announces New Renewable Energy Technology Program
SolarWorld to Recruit Workers From Portland Community College
National Renewable Energy Laboratory Partners with RES Americas for Balance-Of-Plant Research

Top Headlines

Select Organizations to Watch

European Master in Renewable Energy
www.master.eurec.be

Guangzhou Institute of Energy Conversion
http://english.giec.cas.cn

Iowa Lakes Community College
www.iowalakes.edu

National University of Singapore
www.nus.edu.sg

Technical University - Bergakademie Freiberg
http://tu-freiberg.de/index.en.html?int_fav=en

Related Job Titles
- Energy Storage Research Sr. Technician
- Lecturer, Renewable Energy Law
- Post-Doctoral Researcher – Solar Photovoltaics
- Professor of Engineering and Renewable Energy
- Weatherization Training Program Manager
- Wind Energy & Turbine Technology Program Coordinator
Throughout the U.S. and the world, many clean-tech companies are increasingly moving manufacturing near the end market for their products. In some cases it’s becoming critical – because of financial incentives, carbon constraints, shipping costs, and other factors. As this trend toward localization continues, regional market demand and government support will play strong roles in the creation of clean-tech manufacturing jobs.

The most prominent evidence of localization can be seen in the wind industry, where manufacturers are faced with the logistical challenges of distributing massive products over vast market areas. For utility-scale wind turbines, a single blade typically ranges from 27 to 45 meters in length, according to the American Wind Energy Association. At this scale, the location of manufacturing can be the difference between business success and failure.

Denmark-based Vestas Wind Systems, the world’s largest wind turbine maker, is placing manufacturing bets on where tomorrow’s market demand will be. In April 2009, the firm revealed plans to lay off 1,900 European employees, citing a reduced demand for wind turbines in Northern Europe. But across the Atlantic, the company is eyeing growth. Vestas says it will spend $1 billion in capital investments in the U.S. over the next two years and is hoping to create thousands of new jobs in the process. The manufacturer is also expanding in China, where it is offering a Chinese-made 850 kW turbine designed to withstand the winters of Inner Mongolia.

Localization is also prompting moves within as well as across borders. In August 2009, German wind turbine manufacturer REpower Systems announced plans to move its U.S. headquarters from Oregon to Colorado, closer to the growing wind energy market across the Great Plains of mid-America. As Iowa has surged past California to become the nation’s second largest producer of wind energy (behind Texas), turbine and blade manufacturers such as Acciona, Siemens, and TPI Composites have established facilities there.

Other clean-tech sectors are experiencing similar labor local-

Profile: Vestas Wind Systems

Location
Randers, Denmark
www.vestas.com

Founded
1945

Employees
21,000

Industry Role
What started as a maker of household appliances is now the world’s largest manufacturer of wind turbines. In 2008, the company reportedly installed a new turbine every three hours worldwide.

The Buzz
Vestas is chasing market demand with targeted expansion in China and other markets, but the closing of a U.K. blade factory earned the turbine manufacturer its hottest headlines of the year. A sit-in protest at the Isle of Wight plant was ultimately not enough to overcome decreased demand in Northern Europe. The company eventually said in a press release that “it does not make sense, from an environmental and cost perspective, to ship turbines overseas instead of providing them locally.”

Bankrollers
In 1998, Vestas went public with an IPO on the Copenhagen Stock Exchange. The company now has a market cap of around $15 billion.

Jobs Story
More than 400 jobs were deemed "redundant" at the Isle of Wight factory, and more than 1,200 more people are expected to be laid off in the company’s Denmark facilities. Meanwhile, Vestas Americas – with headquarters in Portland, Oregon – has several facilities in operation or under construction in Colorado, and plans to establish new R&D sites in Houston and Boston.

Our Take
We expect to see a continued effort from Vestas to establish manufacturing sites near the fastest-growing markets. Localization will be exceptionally important in markets like China, where the government is requiring wind farms to be constructed with a high percentage of domestically produced components.
For the emerging wave and tidal energy sectors, manufacturing resembles the wind industry, with products’ massive size and weight confining production – and jobs – to limited coastal areas like Oregon, New Jersey, Portugal, and Scotland. Although the wave and tidal energy industry is in its infancy, it still carries the potential to create a significant number of jobs. An August report by the Forum for Renewable Energy Development in Scotland estimated that scaling up of marine energy could add 12,500 jobs to the Scottish economy by 2020.

Even in the solar PV market, where supply chain activities are often scattered across the globe, there is evidence of efforts to localize final module assembly. Chinese PV module maker Suntech Power, encouraged by U.S. solar market conditions, says it will be opening an American assembly plant in 2010 in either Texas or Arizona that is expected to employ 75 to 150 people. By locating its facilities closer to its customers in the American Sunbelt, the company expects to decrease logistical costs, reduce transport-related carbon emissions, and combat increasingly protectionist policies that put foreign-manufactured products at a disadvantage.

To be sure, much large-scale production, especially of smaller form-factor clean-energy products like PV cells, will continue to migrate to lowest-cost manufacturing regions like China. Clean-tech manufacturing jobs will never be as location-specific as installer and maintenance jobs at the sites of clean-energy installations and energy-efficiency retrofits. But as customers become more concerned with a product’s carbon footprint, and a price on carbon boosts shipping costs – a large diesel-powered cargo ship can emit as much CO2 in a year as a medium-sized coal plant – we do expect the localization of clean-tech manufacturing jobs to be a growing trend.

Top Headlines

- REpower Announces New Denver Headquarters for U.S. Subsidiary
- Vestas Expands Wind Turbine Manufacturing in China and U.S. as British Demand Collapses
- Wind Energy Manufacturing Boom Taking Shape in The U.S.
- Suntech Power Looks for Factory Space in the U.S.
- Arizona-Made Solar Panels Hit Market
- U.K. Consumers Continue to Demand Lower Carbon Despite Ongoing Financial Crisis

Select Organizations to Watch

- Aquamarine Power
 www.aquamarinepower.com
- Clipper Windpower
 www.clipperwind.com
- REpower Systems
- Suntech Power
 www.suntech-power.com
- Vestas Wind Systems
 www.vestas.com

Related Job Titles

- Biomass Collector, Separator, and Sorter
- Senior Power Systems Engineer
- Solar Fabrication Technician
- Wind Turbine Blade Composite Material Specialist
- Wind Turbine Generator Builder
The smart grid has become one of the hottest areas of clean tech. What is it? Well, it’s a lot of things, ranging from enhanced grid monitoring and renewable energy integration to smart meter networking and consumer energy management. Deployment of these upgrades to the world’s electrical grids will require an enormous amount of manpower – and this means jobs.

There will be plenty of opportunities for traditional grid workers: installing smart meters, building transmission and distribution networks, and integrating new generation capacity. But the heart of the smart grid is in the digital management of data, not unlike the Internet. With even more potential nodes than the Internet, however, the smart grid will be the mother of all networks, placing the work of creating smart grids largely on the shoulders of the IT community.

Recognizing the smart grid as an IT-related challenge, some high-level IT executives are leaving traditional industry posts for leadership roles at emerging smart grid startups, a trend that is sure to continue. In mid-2009, Silver Spring Networks, a leading developer of grid networks, lured Judy Lin away from Cisco Systems where she had been senior vice president of the company’s Ethernet switching technology group. She now serves as chief product officer for Silver Spring. Not long before Lin’s move, John Spirtos left his post as senior vice president of Comverse Technology – a communication and billing software provider – to become head of corporate development and strategy at GridPoint, one of the top grid network platform developers.

In some cases, entrepreneurial spirit has led IT veterans to form their own companies. Consider Greenbox Technology (which was recently acquired by Silver Spring Network), founded by creators of the web multimedia platform Flash. Jon Gay, Peter Santangeli, Robert Tatsumi, and Gary Grossman left the Internet world behind in 2007 to pursue a solution to home energy management. Greenbox’s web-based tool got a test run in early 2009 during an Oklahoma Gas & Electric smart grid pilot project. Ecologic Analytics is another example. Ecologic’s current vice president and chief operating officer,
Kristine Beck, cofounded the meter data management company in 2000 after spending nearly two decades in IT, most recently with the IT department of Minnesota-based utility Xcel Energy.

For non-executive IT professionals, grid-related jobs can be found at smart grid startups. But a growing number of opportunities are also emerging at traditional high-tech companies looking to capitalize on efforts to digitize the grid.

Cisco has emerged as an influential member of the smart grid community and currently offers a bundle of grid products, technologies, and services. The IP networking giant says it already has more than 100 employees dedicated to work on the smart grid and expects this number to grow as business picks up. In August, IBM announced a partnership with energy-data-network-developer Trilliant to improve integration of smart grid software. IBM’s grid ambitions can also be seen in the Mediterranean island nation of Malta, where the company is creating the world’s first nationwide smart grid. And Google and Microsoft have taken their fight from search engines to home energy management with the release of competing energy management products, Google’s PowerMeter and Microsoft’s Hohm.

The growing smart grid market has some serious job creation potential. A January 2009 report by KEMA, Inc., an energy consulting firm, estimated that in the U.S. alone, smart grid development efforts could create up to 280,000 direct jobs between now and 2012. IT veterans and novices, recognizing the smart grid’s potential, are shifting attention to this booming industry. The smart grid scale-up demands a workforce that can handle the technical challenges of bringing 21st century networking capabilities to our vast and largely antiquated energy infrastructure. Given these circumstances, it’s easy to see that the future of the smart grid belongs to the IT professional.

Trilliant and IBM Join Forces on Smart Grid Software Solutions

IT Companies Helping Make Smart-Grid Vision a Reality

Cisco Teams with Swiss Company on Smart Grid Projects

Grid Net Funding Round Includes Intel

San Diego Utility’s Smart Grid Plans: Cisco, IBM, WiMAX, DOE Funds

Oracle Rumbles into Smart Grid Software Market

Related Job Titles

- Advanced Metering Engineer
- Energy Analytics Manager
- Grid Application Systems Analyst
- Lead Architect – AMI and Smart Grid Technology
- Network Operations Center (NOC) Technician
- Smart-Grid Solution Expert

Top Headlines

Select Organizations to Watch

Cisco Systems
www.cisco.com

IBM
www.ibm.com

Silver Spring Networks
www.silverspringnetworks.com

Tendril Networks
www.tendrilinc.com

Trilliant
www.trilliantinc.com
In today’s challenging economic climate, government actions to get capital flowing again have taken center stage. The United States’ $787 billion stimulus plan, officially the American Recovery and Reinvestment Act (ARRA) of 2009, is one of the most prominent examples, along with stimulus efforts in other countries such as Germany and Japan. And China, by all measures, is vying to be a clean-tech powerhouse by investing heavily in its nation’s build out of clean technologies. China is now home to a plethora of solar photovoltaic (PV) manufacturers, burgeoning large-scale wind farms, and the largest concentration of solar hot water heaters in the world. According to numerous reports, the Chinese government could end up spending U.S. $440 billion to $660 billion toward its clean-energy build out over the next ten years.

But government stimulus plans alone cannot guarantee success. The clean-energy sector also needs innovative new finance models that leverage public and private capital to fund industry growth and projects large and small. In order to gain the benefits of the clean-tech revolution – from job creation and energy security to climate solutions and the creation of a 21st century economy – the United States needs new financial instruments that can provide the capital necessary for the rapid expansion of clean-tech industries. Fortunately, a growing number of innovative new ideas for U.S.-based public financing of clean tech provide both promise and hope.

Below is a quick overview of the five of the most promising public financing models:

- Clean Energy Deployment Administration (CEDA) aka The Green Bank
- Clean Energy Victory Bonds
- Tax Credit Bonds
- Federal Loan Guarantees
- Clean Tech City Funds

To learn more about the financing models overviewed on these pages, see our companion report *Five Emerging U.S. Public Finance Models: Powering Clean-Tech Economic Growth and Job Creation*. Published in partnership with Green America, the report can be downloaded at www.cleanedge.com and www.greenamericatoday.org. In the full report, we review each of the financing models in depth, including their history, current state of activity, and potential impact on clean-tech economic growth and job creation – along with visual flow charts and further recommended reading.
MODEL #1: CLEAN ENERGY DEPLOYMENT ADMINISTRATION (THE GREEN BANK)

The Clean Energy Development Administration (CEDA), aka The Green Bank, is a relatively new concept for public clean-energy financing. Plans for CEDA are working their way through the U.S. House and Senate, via provisions in both chambers’ versions of pending energy legislation, and the idea has picked up considerable bipartisan support. The bank could fund a range of renewable energy, energy efficiency, and low-carbon solutions. And most important, the bank is projected to leverage public funding by a factor of 10 to 20, so $10 billion invested by the bank could result in $100-$200 billion in total public and private investment by utilizing traditional loans, loan guarantees, and credit enhancement provisions.

While the concept of a green bank is new to energy, it isn’t new to the U.S. Similar government investments have supported private enterprise in the past, from the build out of railroads in the 19th century to the development of ARPANET, the precursor to the Internet. And there’s a rich history of quasi-governmental organizations that support investments, including the Export-Import Bank of the United States, the Overseas Private Investment Corporation, and the CIA’s not-for-profit venture capital arm In-Q-Tel.

MODEL #2: CLEAN ENERGY VICTORY BONDS

The concept of Victory Bonds isn’t new. Most notably during World War II, similar bonds were sold in the U.S., Canada, and other nations to support the war effort. Between 1941 and 1946, 85 million Americans, approximately 60 percent of the total U.S. population at the time, invested a cumulative $185 billion in so-called “war bonds” (more than $2 trillion in todays dollars). In Canada, Victory Bonds raised approximately $12.5 billion for that nation’s war effort during WWII, with rates ranging between 1.5 and three percent.

A number of initiatives are currently underway worldwide to replicate the war bond concept. The World Bank, along with Scandinavian bank SEB and several other institutions, raised more than $350 million for the first round of “green bonds” in late 2008 with interest rates of around 3 percent. Similarly, in 2007, the European Investment Bank (EIB), a nonprofit long-term lender in the EU, issued more than 1 billion euros worth of its AAA-rated Climate Awareness Bonds.

Clean Energy Victory Bonds could potentially democratize the financing of clean tech. In today’s investment environment, a bond that returns between 3 to 5 percent annually, supports clean-energy development and national security, and is backed by the U.S government should prove popular.

MODEL #3: TAX CREDIT BONDS

There are several types of federal bonds that offer bondholders a federal tax credit partially or fully in lieu of interest payments. Three with the best potential to fund clean-energy projects and create jobs include Clean Renewable Energy Bonds; Qualified Energy Conservation Bonds; and Build America Bonds (BABs).
With each model, the Internal Revenue Service essentially authorizes a bonding authority (such as a city, state, or Native American tribal government) to issue federal tax credits as payments to a bond buyer. This gives the bonding authorities additional options for raising the money necessary to fund bonded projects in energy, transportation, construction, and other areas. BABs, in particular, have proven extremely popular, because in place of a tax credit, bond issuers may opt for a BAB-Direct Payment and receive a direct federal subsidy instead. BABs have not yet been used for clean-energy projects, but have plenty of untapped potential to make that happen.

MODEL #4: FEDERAL LOAN GUARANTEES

Government loan guarantees have a long history. Bringing this legacy to clean energy, the U.S. Department of Energy’s Loan Guarantee Program, established in the Energy Policy Act of 2005, sounded great in theory and simple in concept. For a range of clean-energy-related projects, the feds would act as a guarantor for banks and other lenders who might balk at a loan because of project uncertainty, default risk, lack of traditional collateral, or other reasons. But an expensive and laborious application process, onerous red tape, lack of DOE emphasis, and the need to hire outside consultants, lobbyists, and legal counsel just to navigate the process kept most prospective recipients away from the program.

Recent deals, however, show a strong ray of hope for what the loan guarantee program can achieve. A recent DOE guarantee of $535 million to solar PV panel maker Solyndra will help fund the first phase of its new PV manufacturing plant in Fremont, California. President Obama and Secretary of Energy Dr. Steven Chu have been much more aggressive in supporting the program, and in July 2009 Chu announced an additional $30 billion in DOE loan guarantees, plus $750 million for electric transmission projects that commence before 2011. Other recent loan guarantee recipients include wind energy developer Nordic Windpower USA, energy storage technology provider Beacon Power, and auto manufacturers Ford, Nissan North America, and Tesla Motors to speed development of electric and fuel-efficient vehicles.

MODEL #5: CITY FUNDS

Among the more innovative clean-energy financing models in the U.S. are city-administered loan funds springing up from coast to coast. Particulars vary considerably from city to city, but in the basic model, homeowners borrow the funds necessary to pay for a solar array or an energy efficiency upgrade – then repay the loan (often at below-market rates) over a long-term period through their property tax or utility bill.

Cities at the forefront of this model include Berkeley, California; Portland, Oregon; Cambridge, Massachusetts; and Boulder, Colorado. Many examples are also emerging at the state level, with Colorado, Connecticut, New Jersey, Oregon, and Pennsylvania among those weighing plans.

To learn more about the financing models overviewed on these pages, see our companion report *Five Emerging U.S. Public Finance Models: Powering Clean-Tech Economic Growth and Job Creation*. Published in partnership with Green America, the report can be downloaded at www.cleandedge.com and www.greenamericatoday.org.
JOB RESOURCE GUIDE

Job Reports

Check out the reports below to learn more about clean-tech job growth potential and associated economic benefits *(titles link to the report PDFs)*.

<table>
<thead>
<tr>
<th>The Clean Energy Economy</th>
<th>How to Revitalize America’s Middle Class With the Clean Energy Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Pew Charitable Trusts - June 2009</td>
<td>Blue Green Alliance - June 2009</td>
</tr>
<tr>
<td>Pew’s exploration of America’s clean-energy economy includes a look at the growth of clean-energy jobs from 1998 to 2007. States are ranked by job and business presence, investment totals, patent activity, and rate of growth.</td>
<td>This policy brief is an update of a 2006 analysis and is designed to highlight the economic benefits that renewable energy development can bring to regions throughout the country.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ASES and Management Information Services - December 2008</td>
<td>Global Insight - October 2008</td>
</tr>
<tr>
<td>As the title explains, this report by the American Solar Energy Society defines, estimates and forecasts the renewable energy and energy efficiency industries in the U.S. and Colorado under three scenarios.</td>
<td>This report examines the economic benefits of the ‘Green Economy’. Current green jobs are discussed, along with potential future job growth in areas like renewable power generation, energy efficiency, and renewable transportation fuels.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Economic Benefits of Investing in Clean Energy</th>
<th>Wind Energy and Green Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center for American Progress and PERI - June 2009</td>
<td>Governors’ Wind Energy Coalition - February 2009</td>
</tr>
<tr>
<td>This paper looks at how the American stimulus and proposed climate legislation will affect jobs, income, and the clean-energy economy.</td>
<td>GWEC profiles the economic benefits of wind energy and provides policy recommendations which it believes will help states meet the full economic potential from wind energy.</td>
</tr>
</tbody>
</table>

Books

These books are a useful way to navigate the clean-tech industry and find the best strategies to land a job.

<table>
<thead>
<tr>
<th>Careers in Renewable Energy</th>
<th>Green Careers – WetFeet Insiders Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careers in Renewable Energy</td>
<td>Frank Marquardt – WetFeet.com, 2008</td>
</tr>
<tr>
<td>With overviews of several renewable energy sectors and information about different career opportunities, this book is a good starting point for anyone looking for a job in the industry.</td>
<td>Marquardt, who more recently authored The Solar Job Guide e-book, looks at how to land a job in emerging green industries.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The Clean Tech Revolution</th>
<th>The Green Collar Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides an excellent overview of the key drivers behind the shift to clean technology and highlights eight emerging clean-tech opportunities. A business-oriented crash course in clean technology.</td>
<td>Written by Green for All founder Van Jones, this book presents a blueprint of how a “green new deal” can simultaneously tackle environmental and socio-economic challenges, creating thousands of jobs in the process.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbara Parks, Jodi Helmer – Alpha, 2009</td>
<td>A. Bronwyn Llewellyn – Adams Media, 2008</td>
</tr>
<tr>
<td>The popular book series tackles green jobs with this book that explores opportunities in several sectors in the clean-tech industry.</td>
<td>A useful text, this book breaks down opportunities in many industries for people interested in environmentally conscious careers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Green Careers: Choosing Work for a Sustainable Future</th>
<th>The Solar Job Guide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Cassio – New Society Publisher, 2009</td>
<td>Frank Marquardt – 2009</td>
</tr>
<tr>
<td>This book provides several sector overviews, information on career opportunities, job search resources, and case studies on environmental jobs.</td>
<td>For those specifically interested in the solar field, this e-book gives a detailed look at the industry and provides useful information on how to land a solar job.</td>
</tr>
</tbody>
</table>
JOB RESOURCE GUIDE

Blogs

Blogs are a great way to keep up with the latest news and gather insight from some of the brightest minds following the industry. Below is a sampling of what we feel are some of the best clean-tech blogs. To track these and other industry blogs, visit www.cleanedge.com/blogs.

<table>
<thead>
<tr>
<th>Apollo Alliance Blog</th>
<th>Green Tech Pastures – ZDNet</th>
</tr>
</thead>
<tbody>
<tr>
<td>earth2tech</td>
<td>R-Squared Energy Blog</td>
</tr>
<tr>
<td>Green Collar Blog</td>
<td>Clean Techies</td>
</tr>
<tr>
<td>Green Tech – CNET</td>
<td>Environmental Capital - WSJ</td>
</tr>
<tr>
<td>Green Light – Greentech Media</td>
<td>Gunther Portfolio</td>
</tr>
<tr>
<td>Clean Technica</td>
<td>Green Inc – NYT</td>
</tr>
<tr>
<td>EcoGeek.org</td>
<td>Venture Beat – Green Beat</td>
</tr>
<tr>
<td>Green for All Blog</td>
<td></td>
</tr>
</tbody>
</table>

Conferences/Career Fairs

Here are a few of the best events at which to explore clean-tech opportunities and support the clean energy economy.

<table>
<thead>
<tr>
<th>Good Jobs, Green Jobs</th>
<th>Green Career Conference (SD, SF, LA)</th>
<th>Green Professionals’ Conference</th>
</tr>
</thead>
</table>

Networking Organizations & Nonprofits

Job postings aren’t the only way to find jobs. Often times the best career opportunities are found through someone you know. Check out these organizations and events to make sure you’re meeting the right people.

<table>
<thead>
<tr>
<th>Networking</th>
<th>Nonprofits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eco Tuesday</td>
<td>Apollo Alliance</td>
</tr>
<tr>
<td>Green Drinks</td>
<td>Green America</td>
</tr>
<tr>
<td>Net Impact</td>
<td>Green For All</td>
</tr>
<tr>
<td>Renewable Energy Business Network</td>
<td>Repower America</td>
</tr>
</tbody>
</table>
Education/Training

As the clean-tech industry scales up, the number of job opportunities will grow significantly. Education and training programs will provide the necessary workforce to satisfy this growth. The collection below, while not a comprehensive list, is a sampling of existing clean-tech training and education programs.

Undergraduate Education
- Appalachian State University (Boone, NC) – Bachelor of Science Degree in Appropriate Technology
- Illinois State University (Normal, IL) – Renewable Energy Degree
- Oregon Institute of Technology (Klamath Falls, OR) – Bachelor of Science Degree in Renewable Energy Engineering

Community College/Continuing Education/Training
- Amariillo College (Amarillo, TX) – Associate in Applied Science, Renewable Energy
- Bronx Community College (Bronx, NY) – Center for Sustainable Energy
- California Sustainable Building Training Program (CA)
- Coconino Community College (Flagstaff, AZ) - Associate of Applied Science in Alternative Energy Technology
- Columbia Gorge Community College (The Dalles, OR) – Associate of Applied Science Degree in Renewable Energy Technology
- Indian Hills Community College (Ottumwa, IA) – Associate in Advanced Technologies – Renewable Energy Technology & Smart Grid
- Lane Community College (Eugene, OR) – Sustainability Program
- Laramie Community College (Cheyenne, WY) – Associate of Applied Science Degree in Wind Energy
- Oakland Community College (Bloomfield Hills, MI) – Environmental Systems Technology Program
- San Juan College (Farmington, NM) – Associate of Applied Science Degree in Renewable Energy
- Solar Living Institute (Hopland, CA)
- South Plains College (Levelland, TX) – Renewable Energy – Wind Technology Program
- Wayne-Finger Lakes Board of Cooperative Educational Services (NY) – New Vision Renewable Energy Program

Graduate Education
- Antioch University (Keene, NH) – MBA in Organizational and Environmental Sustainability
- Arizona State University (Tempe, AZ) – School of Sustainability
- Bainbridge Graduate Institute (Bainbridge Island, WA) – MBA in Sustainable Business
- Denmark Technical University (Copenhagen, Denmark) – MSc in Wind Power
- Dominican University of California (San Rafael, CA) – MBA in Sustainable Enterprise
- Duquesne University (Pittsburgh, PA) – MBA in Sustainability
- Humboldt State University (Arcata, CA) – Bachelor of Science and Masters of Science in Environmental Resources Engineering
- Illinois State University (Normal, IL) – Renewable Energy Program
- Marylhurst University (Marylhurst, OR) – MBA in Sustainable Business
- Oregon State University (Corvallis, OR) – MBA in Sustainable Business Practices
- Oregon State University (Corvallis, OR) – Northwest Marine Renewable Energy Center (Master of Ocean Engineering
- Portland State University (Portland, OR) – MBA with Sustainability Concentration
- Presidio Graduate School (San Francisco, CA) – MBA in Sustainable Management
- Slippery Rock University (Slippery Rock, PA) – M.S. in Sustainable Systems
- Texas Tech University (Lubbock, TX) – Ph.d in Wind Science and Engineering
- University of Michigan (Ann Arbor, MI) – MBA/MS Program in Global Sustainable Enterprise
- University of Nebraska (Lincoln, NE) – Center for Energy Sciences Research
- University of Washington (Seattle, WA) – Bioresource-Based Energy for Sustainable Engineering Laboratory
- University of Wisconsin (Madison, WI) – Solar Energy Laboratory
- Washington State University (Pullman, WA) – Renewable Energy Program

European Master in Renewable Energy (Core curriculum providers):
- École des Mines de Paris, France
- Loughborough University, UK
- University of Zaragoza, Spain
- Oldenburg University, UK

Specializations for European Master in Renewable Energy:
- Energy Conservation in Buildings Specialization - University of Athens, Greece
- Hybrid Systems Specialization – Kassel University, Germany
- Wind Specialization – National Technical University of Athens, Greece
- Photovoltaics Specialization – University of Northumbria, UK
- Bioenergy -Specialization – University of Zaragoza, Spain
Social Media

Social media websites are becoming a popular way for companies to find employees and job seekers to find jobs. LinkedIn, in particular, is a useful tool for anybody searching for the latest available clean-tech employment opportunities.

<table>
<thead>
<tr>
<th>LinkedIn Groups:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean Edge Jobs</td>
</tr>
<tr>
<td>Clean Technology Job Network</td>
</tr>
<tr>
<td>CleanTechies Around the World</td>
</tr>
<tr>
<td>Cool Climate Jobs</td>
</tr>
<tr>
<td>Energy Professionals</td>
</tr>
<tr>
<td>Green Jobs & Career Network</td>
</tr>
<tr>
<td>Greenfoot Jobs</td>
</tr>
<tr>
<td>Green Tech</td>
</tr>
<tr>
<td>Power Generation Careers</td>
</tr>
<tr>
<td>Renewable Energy Jobs</td>
</tr>
<tr>
<td>Renewables Job Market</td>
</tr>
<tr>
<td>Utility Jobs</td>
</tr>
</tbody>
</table>

Job Boards

The number of clean-tech specific job websites seems to be increasing exponentially, but there are some clear leaders. Listed below are twenty of the best online job boards where you can find the latest clean-tech job opportunities.

<table>
<thead>
<tr>
<th>ACORE Job Finder</th>
<th>Grist Jobs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Careers in Wind (AWEA)</td>
<td>RenewableEnergyWorld.com</td>
</tr>
<tr>
<td>Clean Edge Jobs</td>
<td>SolarJobs.com</td>
</tr>
<tr>
<td>CleanLoop</td>
<td>SustainJobs.com</td>
</tr>
<tr>
<td>CleanTechies</td>
<td>SustainLane: Green Collar Jobs Board</td>
</tr>
<tr>
<td>Cool Climate Jobs</td>
<td>Technical Green</td>
</tr>
<tr>
<td>Green Dream Jobs</td>
<td>TreeHugger: Job Board</td>
</tr>
<tr>
<td>GreenBiz.com</td>
<td>U.S. Green Building Council</td>
</tr>
<tr>
<td>GreenJobs.com</td>
<td>ECO Canada</td>
</tr>
<tr>
<td>GreenJobsSearch.org</td>
<td>RenewableEnergyJobs.com</td>
</tr>
</tbody>
</table>
Our focus on clean tech
Supporting the growth of technology and innovation

To learn more contact:

Scott Smith
Partner and Leader
US Clean Tech Practice
Deloitte & Touche LLP
+1 415 783 4226
ssmith@deloitte.com

Brian Goncher
Director
US Clean Tech Practice
Deloitte Services LP
+1 408 704 4553
bgoncher@deloitte.com

www.deloitte.com

Hobbs & Towne, Inc. is an Executive Search firm that has specialized in Alternative Energy, Power and Clean Technology since 1999. The founders of HTI, Robert “Bobby” Hobbs and Andrew “Andy” Towne, have been recognized as the “pioneers” of Cleantech recruiting and have been involved with some of the most successful companies and exits in the space.

With 7 partners and over 20 recruiters spread across 3 offices in Valley Forge, PA and both New York, NY and San Francisco, CA, HTI has successfully performed critical CEO, Board and other C-Level and senior executive searches across all functional disciplines. HTI has worked closely and partnered with many of the leading investors and technology companies in the industry.

www.hobbstowne.com

Accurate Compensation Data for Clean-Tech Positions

PayScale offers easy access to detailed compensation data for clean technology jobs. With local market rates matched to your organization’s size, location and specialty, you’ll be able to retain the talent you already have on your technology team and negotiate new clean-tech positions with confidence.

To request a free compensation report for one of your hard-to-match clean-tech positions, email pspmarketing@payscale.com. A PayScale product specialist will show you how you can instantly access the world’s largest online compensation database and tailor it to your organization’s exact positions.

www.payscale.com
1-888-699-0702

Sponsorship does not constitute endorsement of any product, service, or idea discussed herein.
MAJOR SPONSORS

STRAWBERRY LLP
A multidisciplinary approach to supporting clean technology development

Contact: Richard Gittelman
rgittelman@akingump.com

AKINGUMP STAWBERRY LLP
akingump.com | 13 offices worldwide | over 800 lawyers

CLEAN EDGE JOBS

Start Your Career in Clean Tech Today! Clean Edge Jobs [jobs.cleanedge.com] connects all levels of candidates with a range of companies throughout the clean-tech value chain from emerging startups and multinationals to nonprofits and research labs.

Clean-Tech Job Seekers:
» Search hundreds of clean-tech jobs by industry, function, company, and location
» Create a profile and post your resume for clean-tech employers and recruiters
» Track the latest clean-tech job opportunities

Clean-Tech Employers and Recruiters:
» Create an account quickly and easily
» Post and manage all of your current openings in one place
» Reach thousands of highly qualified candidates

Clean Edge Jobs is a co-production of clean-tech research and publishing firm, Clean Edge Inc., and clean-tech executive search firm, Hobbs & Towne.

Access hundreds of job postings and connect with qualified candidates!

Sponsorship does not constitute endorsement of any product, service, or idea discussed herein.
Clean Edge, Inc., (www.cleanedge.com), founded in 2000, is the world’s first research and publishing firm devoted to the clean-tech sector. The company, via its publications, events, and online services, helps companies, investors, and governments understand and profit from clean technologies. Clean Edge offers unparalleled insight and intelligence on emerging clean-tech trends, opportunities, and challenges. Among its many activities, the company publishes the annual Clean Energy Trends and Clean Tech Job Trends reports; produces the annual Clean-Tech Investor Summit (along with IBF); maintains a number of benchmark clean-tech stock indexes with NASDAQ OMX including CELS, QWND, and QGRD; and produces Clean Edge Jobs, a leading source for clean-tech job seekers, employers, and recruiters.

American Council on Renewable Energy (ACORE) (www.acore.org) a 501(c)(3) membership nonprofit organization headquartered in Washington, D.C., is dedicated to bringing renewable energy into the mainstream of the US economy and lifestyle through information and communications programs. ACORE provides a common platform for the wide range of interests in the renewable energy community including renewable energy industries, associations, utilities, end users, professional service firms, financial institutions and government agencies.

Green America (www.greenamericatoday.org) is the nation’s leading green economy organization, advancing marketplace solutions for our country’s most serious social and environmental problems. Green America harnesses economic power – the strength of consumers, investors, businesses, and the marketplace – to grow the green economy, stop corporate abuse, curb climate change, and help people and businesses everywhere make economic choices that are good for people and the planet.

Ron Pernick, co-founder and managing director of Clean Edge, is an accomplished market research, publishing, and business development entrepreneur with more than two decades of high-tech experience. He is also the co-author of the highly acclaimed book The Clean Tech Revolution (Collins).

Clint Wilder, contributing editor for Clean Edge, is an award-winning technology and business journalist. His book The Clean Tech Revolution (with co-author Ron Pernick), has been called “the best clean-tech book” by ClimateProgress.org and has been translated into six languages.

Dexter Gauntlett, senior research and marketing associate, has worked in the clean-energy sector for both private and non-profit organizations in the U.S. and developing countries.

Trevor Winnie, research and marketing associate, is involved in a range of activities at Clean Edge including working on the firm’s stock index products and supporting Clean Edge staff in the preparation of reports and consulting projects.

Information contained in this report is not intended to be used as a guide to investing, and the authors make no guarantees that any investments based on the information contained herein will benefit you in specific applications, owing to the risk that is involved in investing of almost any kind.

Special thanks to our report partners and Acre Resources, Renewable Energy Business Network, Solar Energy Industry Association, and others that helped distribute the clean-tech salary survey.
PREMIER SPONSORS

Deloitte (www.deloitte.com) is the leader in serving clean-tech companies. Our extensive experience working with clients in a broad range of industries - energy, utilities, technology, manufacturing, and biotechnology - arms our practitioners with the insight to provide solutions to complex issues that clean-tech companies face. We advise clients on a broad range of audit and enterprise risk, tax, consulting, enterprise sustainability, and financial advisory issues to support the growth of clean-tech companies worldwide. As used herein, “Deloitte” means Deloitte & Touche LLP, a subsidiary of Deloitte LLP. Please see www.deloitte.com/us/about for a detailed description of the legal structure of Deloitte LLP and its subsidiaries.

Formos (www.formos.com) guides environmental entrepreneurs and initiatives through the planning, design and development of new software technologies. Founded in 2002, Formos has evolved into a global product development consultancy providing technical expertise and a holistic product development process to ensure our clients’ success. We work with clients, investors, policymakers and the greater sustainability community to transform product strategies into innovative technology solutions.

Hobbs & Towne, Inc. (www.hobbstowne.com) is an Executive Search firm that has specialized in Alternative Energy, Power and Clean Technology since 1999. The Founders of HTI, Robert Hobbs and Andrew Towne, have been recognized as the “pioneers” of Cleantech recruiting and have been involved with some of the most successful companies and exits in the space. HTI has 7 partners and over 20 recruiters spread across 3 offices in Valley Forge, PA and both New York and San Francisco, CA.

PayScale (www.payscale.com) is the world’s largest ongoing salary survey. With the world’s largest database of individual employee compensation profiles, PayScale provides an immediate and precise snapshot of current market salaries to employees and employers. PayScale’s patent-pending real-time profiling technology collects and indexes employee pay attributes worldwide and makes this compensation data available through its online salary tools and salary benchmarking reports.

MAJOR SPONSORS

REPORT PARTNERS

Sponsorship does not constitute endorsement of any product, service, or idea discussed herein.